Expanding Self-Organizing Map for data visualization and cluster analysis

نویسندگان

  • Huidong Jin
  • Wing-Ho Shum
  • Kwong-Sak Leung
  • Man Leung Wong
چکیده

The Self-Organizing Map (SOM) is a powerful tool in the exploratory phase of data mining. It is capable of projecting high-dimensional data onto a regular, usually 2dimensional grid of neurons with good neighborhood preservation between two spaces. However, due to the dimensional conflict, the neighborhood preservation cannot always lead to perfect topology preservation. In this paper, we establish an Expanding SOM (ESOM) to preserve better topology between the two spaces. Besides the neighborhood relationship, our ESOM can detect and preserve an ordering relationship using an expanding mechanism. The computational complexity of the ESOM is comparable with that of the SOM. Our experiment results demonstrate that the ESOM constructs better mappings than the classic SOM, especially, in terms of the topological error. Furthermore, clustering results generated by the ESOM are more accurate than those obtained by the SOM. 2003 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Self-Organizing Map with Expanding Force for Data Clustering and Visualization

The Self-Organizing Map (SOM) is a powerful tool in the exploratory phase of data mining. However, due to the dimensional conflict, the neighborhood preservation cannot always lead to perfect topology preservation. In this paper, we establish an Expanding SOM (ESOM) to detect and preserve better topology correspondence between the two spaces. Our experiment results demonstrate that the ESOM con...

متن کامل

Free Projection SOM: A New Method For SOM-Based Cluster Visualization

In this paper an extension to the learning rule of the Self-Organizing Map (SOM) namely the Free Projection SOM (FP-SOM) is presented in order to enhance the SOM projection. The general idea of the FPSOM is to mirror the movement of weight vectors during the training process allowing their images on the map grid to move more freely between the junctions. The result of the extended training algo...

متن کامل

A Vector Field Visualization Technique for Self-organizing Maps

The Self-Organizing Map is one of most prominent tools for the analysis and visualization of high-dimensional data. We propose a novel visualization technique for Self-Organizing Maps which can be displayed either as a vector field where arrows point to cluster centers, or as a plot that stresses cluster borders. A parameter is provided that allows for visualization of the cluster structure at ...

متن کامل

Analysis of Complex Systems using the Self Organizing Map

The Self Organizing Map SOM is a powerful neural network method for the analysis and visualization of high dimensional data It maps nonlinear statistical relationships between high dimensional input data into simple geometric relationships on a usually two dimensional grid The mapping roughly preserves the most important topological and metric relationships of the original data elements and thu...

متن کامل

Visual analysis of self-organizing maps

Abstract. In the article, an additional visualization of self-organizing maps (SOM) has been investigated. The main objective of self-organizing maps is data clustering and their graphical presentation. Opportunities of SOM visualization in four systems (NeNet, SOM-Toolbox, Databionic ESOM and Viscovery SOMine) have been investigated. Each system has its additional tools for visualizing SOM. A ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Sci.

دوره 163  شماره 

صفحات  -

تاریخ انتشار 2004